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A study of the combined effect of thermal radiative 
transfer and a magnetic field on the gravitational 

convection of an ionized fluid 
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Defence Science Laboratory, Metcalfe House, Delhi 6, India 

(Received 17 January 1962 and in revised form 25 May 1962) 

The effect of radiative transfer on the thermal stability of an ionized fluid, 
in the presence of uniform vertical magnetic field has been examined from 
hydromagnetic approximations. Two asymptotic cases (i) when the fluid is 
optically thin and (ii) when it is optically thick, have been examined in detail. 
The principle of exchange of stabilities and the concept of over-stability have 
been discussed and the physical conditions under which the former will hold, 
obtained. Also the conditions as to which type of instability will arise first 
are derived and i t  has been shown that in the presence of large magnetic 
field over-stability arises earlier than convection under the first approximation. 

~ ~ ~~ ~~ 

1. Introduction 
The problem of the stability of an incompressible fluid enclosed between 

horizontal surfaces with the lower surface at a higher temperature has been the 
subject of theoretical investigation by several authors-Rayleigh (1916), Pellew 
& Southwell (1940). Thompson (1951), Chandrasekhar (1952), Goody (1956), and 
others. Earlier BBnard (1 900,1901), on the basis of his carefully controlled experi- 
ments, had established that a horizontal layer of a fluid when heated from below 
settles down eventually into a stationary convection pattern in the form of poly- 
gonal cells, usually known as cellular convection. Rayleigh explained these results 
theoretically by showing that instability will set in above a critical value of the 
dimensionless parameter now known after his name, involving the distance 
between the surfaces, the temperaturegradient, the gravitational acceleration and 
other physical properties of the fluid like conductivity, viscosity and coefficient of 
cubical expansion. He also showed that a steady-state solution of the problem 
does indeed point out the kind of cell formation seen in B6nard’s experiments. 
He had, while doing so assumed the shape of the cells in the horizontal (X, Y ) -  
plane (whichis the observation plane in these experiments) to be rectangular. The 
boundaries of these cells are characterized by either the vertical velocity or its 
normal derivative being equal to zero, similar to the nodal figures generated in a 
uniform membrane vibrating freely and held in a horizontal position by being fixed 
rigidly at its ends. Pellow & Southwell extended the treatment of this problem to 
a more general cell shape. They also, for the first time, showed the power and use- 
fulness of the application of the variational technique to determine the critical or 
marginal conditions in this problem. Goody (1956) formally made use of a 
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variational method, extended by Malkus (1954), to take account of the variable 
temperature gradient in estimating the influence on the stability of a fluid enclosed 
between two free surfaces of radiative transfer as an extra mode of heat trans- 
mission. Spiegel(l960) more recently alsoundertook to solve the problem together 
withradiation. Themodelconsideredbyhim,inwhichtheeffect ofthermalconduc- 
tion is neglected, is motivated by its possible astrophysical applications. Morton 
(1957) undertook to demonstrate the importance of viscosity and heat conduction 
on the departure from equilibrium of a layer of fluid having non-linear tempera- 
ture gradients. Although these properties had been included in the work of 
previous authors, Morton explicitly determined the effect of the variation of the 
Prandtl number u* in this problem. He established that the variation of u* 
affects only the initial rate of growth of the disturbance and not the value of the 
critical Rayleighnumber governing marginal stability. He thus claims to have dis- 
proved the assertion made by Sutton (1950) in connexion with a different kind of 
instability observed experimentally by Chandra (1938), that it may be due to a 
thermal boundary layer near the boundary. Morton also observed that the non- 
linear temperature gradients do not sensibly effect the state of marginal stability. 
Due to the importance of this problem in situations of astrophysical and terrestial 
interest Chandrasekhar extended this analysis to an ionized medium in the 
presence of a magnetic field, with and without Coriolis forces. His results showed 
that the magnetic field inhibits convection. About the same time Thompson 
(1951) studied a similar problem for two rigid surfaces by methods originally 
employed by Rayleigh and Jeffreys (1  928). 

There are situations of great physical interest both terrestial and astrophysical 
in which the role played by magnetic field as well as radiation could be important. 
Of particular interest are questions relating to stability of high temperature 
configurations attained by magnetic fields. In  an attempt to investigate a 
stability problem having the effect of thermal radiation as well as magnetic 
field within its scope, it seems quite expedient to formulate a simple problem to 
start with. The present paper is such an attempt. It considers the effect of thermal 
radiative transfer on the stability of an electrically conducting fluid enclosed 
between two free surfaces in the presence of a vertical magnetic field in the 
direction of gravitation. We have examined the problem for two approximations 
of the radiative transfer equation. The various aspects of the problem dealt with 
are the determination of the critical Rayleigh number for marginal stability as 
well as over-stability, by a variational method, the physical condition for the 
applicability of the principle of exchange of stability. The problem has been 
handled at the hydromagnetic level, that is to say the basic equations for the 
problem are those of hydrodynamics and Maxwell’s equations for the electro- 
magnetic field, in which displacement current is neglected. 

2. Basic equations 
In  order to investigate the radiative transfer effects on the convective stability 

of a hot electrically conducting fluid enclosed between two horizontal surfaces 
and heated from below, in the presence of a vertical magnetic field in the same 
direction as the gravitation, one has to deal with the fundamental equations of 
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magneto hydrodynamics-the continuity, momentum, energy and Maxwell 
equations-and the integro-differential equation of radiative transfer. These in 
vector notation are: 

%+V.(pu) at = 0, 

1 P ~ + ( u . V ) U  - p J x H  = -VP+pVV2u-&, 

aT 
- + (u . v) T = KV'T + @/c,, 

[a, 
at 

aH curlH = 4nJ, (a )  curlE = -p-, 
at 

div H = 0, (c) J = a[E fpu x HI, ( d )  

dI 
- as = k(B* - I (s)) ,  

(3) 

(4) 

In  these equations, p is the density of the fluid, u the vector velocity, P the 
pressure, Y the kinematic viscosity, g the gravitational acceleration, T the 
temperature, K the thermal diffusivity, cp the specific heat per unit volume, @ the 
radiative heating per unit volume, I the intensity of radiation at  any point, k the 
absorption coefficient, B* the Planck function, s and w are an element of length 
and solid angle respectively. J is the current density, H the intensity of the 
magnetic field, a and p being the electric conductivity and the magnetic per- 
meability respectively, all in electromagnetic units. In  the small perturbation 
method of dealing with the problem of stability one determines the behaviour of 
the system under investigation when disturbed from its initial state of equilibrium 
(called the static state) characterized by no convection a t  all. In  the problem in 
hand we are interested in the motion resulting from heating the lower surface 
enclosing the fluid. Therefore, in this case, the agency causing perturbation is the 
temperature. Looked at from this standpoint Tin the above differential equations 
represents the temperature a t  any point of the fluid in the disturbed state and 
may be formally put as T = (To + 0 ) ,  temperature with a subscript zero (i.e. To) 
referring to the static case and O the perturbation in the temperature fleld. There 
being no temperature gradients in the horizontal direction, this may also be put 
as T = T* +J/?dz + 8, z being the vertical co-ordinate and p = - I/?\ = - IdT,/dzl 
the vertical temperature gradient, and T* the temperature of the lower plate. 
Similarly, P = (p,+p). u above, then, would be the convective velocity due to 
the temperature rise 8, J the electric current resulting from this velocity. This 
current J will have an accompanying magnetic field h say, being related to H by 
the relation H = (H, + h), H, being the magnetic field intensity in the static state 
maintained by an external source and in the direction of gravitation. @ is a 
function of temperature and hence may be similarly split up as @ = @, + 4, @, 
being the radiative heating in the static state and 4 that due to the perturba- 
tion 0. The differential equations for the static state are readily derived. Since J 
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and u are zero, the momentum equation leads to the hydrostatic distribution 

(7 )  
of pressure given by 

there being no variation of Po in the horizontal ( X ,  Y)-plane. The conduction 

vp, = aepZ = - p g ,  

equation for the static state is 
CD @To CD K V ~ T ,  + 2 = K __ + -O = 0, 
c?, a22 c?, 

the other two components of V2 being zero. This equation shows that /3, the vertical 
temperature gradient, must be a function of z in the presence of radiative transfer 
effects, contrasting with the usual case in the absence of Q0, where p is constant. 
The solution of (8) has to be obtained with the help of (6). Goody (1956) has done 
this with the help of the Milne-Eddington approximation. This model though 
good enough in the main body of the fluid is not strictly valid near the boundaries. 
His solution is quoted later in the paper. 

Proceeding to solve the differential equations from (1) to (6) some simplifica- 
tions have to be made, the most important of them being that of linearization; 
retaining the dependent variables only up to the first power and neglecting their 
product or square and higher powers. Again the variation in density is neglected 
except in so far as it effects the buoyancy term-the so-calledBoussinesq approxi- 
mation. The law of density variation with temperature is taken to be the linear 

(9) 
relation 

CL being the coefficient of cubical expansion. Equation ( 7 )  reduces to 

P = P O P  - 4 s p  dz + @)>, 

8 being zero for the initial static case. Simplifying the momentum equation with 
the help of Maxwell’s relations and equation (lo), we have in terms of the vertical 
components w and h, 

aw - p ~ o a h  +y@+lJV2w--, ax* 
at 4np0 aZ a2 

where 

Again starting with ( 4 b )  making use of the Ohm’s law (44 and the equation (4c) 
together with the relation V . u = 0 derived from equation (1) after neglecting 
the variation of density, we obtain for h 

ah aw 
at 0 ax - = H - + qV2h. 

A similar equation corresponding to (3) is 

Operating on (12) by V . and using V . h = 0 and V . u = 0 we obtain 
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Equations (1 l),  (13), (14) and (15) are the linearized equations of the problem for 
the non-steady case. 

The boundary conditions will depend upon whether the two surfaces at the 
boundary are free or rigid. Since we are solving for two free surfaces the boundary 
conditions would be 

= 0 at z = 0 and z = d. 

e = w = O  a t  z = O a n d z = d ,  
a Z w  

az2 

aZ az3 

- - = O  at z = O a n d z = d ,  

ah a3h 

8 =  w = O  a t  z =  Oandz=d,  (i), 
a Z w  

az2 
- - = O  at z = O a n d z = d ,  I (ii) 

The boundary conditions (16, iii) are obtainable from (16, i) and the differential 
equation (13) in h. 

3. The equations for the case of marginal stability 
The conditions under which the principle of exchange of stabilities is applicable 

are derived later. We obtain in this section the equations governing marginal 
stability. It is characterized by a/at = 0. The equations (11) to (14) therefore 
become 

aw 
O aZ 2h, H - = -?v 

pw = KV2B + $b/c*. (19) 

These equations can be useful only after q5 has been expressed as a function of 
temperature. In  general $J satisfies an integro-differential equation of the form (6). 
However, this equation reduces simply in two asymptotic cases. These are 
characterized by k - l >  or < some characteristic length in the problem (optically 
thin and optically thick cases). In  the first case, intuitive arguments lead to 
0 = 4nkr0 T4 + const., whereas in the second, a formal series expansion in terms 
of k-1 (or path length defined as the integral of k over length) and neglect of the 
terms higher than the first gives 

4n 
0 = - 3lc c082T4, 

ro being Stefan’s constant (see Chandrasekhar 1957; Goody 1956; Murgai 1962). 
If in this problem we regard a, the cell size defined later, as a typical representative 
length, we have for $b after operating with V: 

v; 4 = - 4nks*v; e (lcw < a2) (20) 

(called hereafter approximation (a ) ) ,  

and *V2V2,0 (k2d2 % a2) 
4n v;$b = % S  

(called hereafter approximation ( b ) ) ,  
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where v2 - - a2  /a x*2 + a2/ay*2 and S* = 4n(70(T0 + 0)3; 

assumed to be constant. Operating on (17) twice by V 2  and on (19) by V2,, making 
use of (15) and (18) and eliminating 0, we have two equations in w corresponding 
to the two forms of q5 given by equations (20 )  and (21). 
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These partial differential equations are solved 
variables by putting w = f ( ~ * ,  y*) W(z) ,  where 

a2 v y  = -3 f. 

The differential equation (24 )  is a Helmholtz 

by the method of separation of 

(24 )  

equation and is similar to that 
satisfied by the displacement of a uniform membrane vibrating freely in a hori- 
zontal plane. The dimensionless number a is characteristic of the cell shape and 
size. The simple artifice embodied in the equation (24) seems quite an important 
point in the theory for this problem. Defining a dimensionless variable c = (x /d )  - 9 we have 

a 2  1 a 2  02 _ -  
az2 - 3~ = ~3 

say, 

With this, equations ( 2 2 )  and (23 )  become, with the help of ( 2 4 ) )  

[ (D2-a2)2-QD2] (D2-a2- -3k2d2x)w  = -Ra2Pw/p, (25) 

(02 - a2) [(D2 - a2)2 - QP] ( 1 + x )  w = - Ra2pw/p, (26) 

where x = 4nX*/3k~c, ,  Q = p2Hg u/po v and R = y p d 4 / v ~  is the Rayleigh number, 
p being the average temperature gradient. 

The boundary conditions in terms of 5 become for free surfaces 

w = o  for 5 = &$, 
Dh = D3h = 0 for 6 = &+, 

D2w =D4w = 0 for c = *+. 
(27) 

The last conditions are obtained from the fact that the temperature is constant a t  
the boundaries. 

in the initial static case, Goody? (1956) has given the following solution for 
namely, 

'f This is the correct form of and differs slightly in the expressions for L and M 
from that given in Goody's paper. We have corresponded with Prof. Goody on this 
point. 
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L and M being constants given by 

+A + +( 3 + 3x)t sinh :A + cosh +A , 1 -l 
f2 

M = - [&( 3 + 3x)t sinh +A + cosh +A], x 
where h2 = 3k2d2(1 +x). 

Strictly speaking one should, and in principle one can, solve equations (25), (26) 
together with (28) and the boundary conditions (27). This procedure will give for 
fixed values of the parameters Q, x and a2, a series of values of R from which one 
could find the minimum. The variation of this minimum value with a2 would give 
the critical value R, of the Rayleigh number. This sequence of steps would have 
to be carried out for an expected range of Q and x. This would obviously become 
quitelaborious. The labour involved is considerably reduced by the application of a 
variational procedure to such problems as first established by Pellew & Southwell 
(1940) and later extended by Malkus (1954). This procedure is based on the fact 
that the true solution of the differential equation leads to the minimum value of R. 
Therefore if one chooses a function satisfying the boundary conditions but not 
necessarily the differential equation and containing a few arbitrary parameters, 
one can find an approximate value of Rmin by minimizing with respect to them 
the expression for R. The accuracy of this minimum value can be improved by 
increasing the number of parameters in the trial function. However, a comparison 
of the value found from an exact solution and that obtained by this procedure, as 
done for example by Pellew & Southwell, shows that one or two such parameters 
are good enough for a fairly accurate value of the Rayleigh number. The critical 
value R, is obtained here by another minimization procedure. The various steps 
are explained below. However, for a trial function chosen to satisfy the boundary 
conditions for two free surfaces, the arbitrary parameter mentioned above does 
not appear in the final expression for R. m in equation (34) is a parameter which 
can however take only integral values. 

4. Variational procedure and the determination of R c  
(a)  Optically thin ca8e 

Multiplying equation (25) on both sides by w and integrating from - 4 to 4 we find 
I 

a215 2d2 I,+Q13+3k2d2~Q14] = -, a215 (29) 
1 

R=---[I1+3k x 
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Consider now the effect on R of an arbitrary variation in w compatible with the 
boundary conditions (27). We have 

SR = ~ SI, + 3k2d2~S12 + QSI, + 3k2 d2xQS14 - - SI, , ( 3 1 )  
.215 " I5 I 1  

SIi denoting the corresponding variation in Ii. Integrating by parts and making 
use of the boundary conditions we have after substituting in (31), 

Q* standing for the operator in the left-hand side of (25) operating on w. Hence 
for a small but finite Sw, S R  E 0 if 

Q*w+Ra2((P/P)w = 0,  

i.e. if the differential equation (25) is satisfied. The converse of this statement is 
also true. 

( b )  Optically thick case 

The corresponding expression for R obtainable from (26) by proceeding along 
similar lines is 

(33) 
1 + x 11 + Q4 

a2 I5 
R=--. 

The same kind of analysis can be carried out to prove that R given by (26) is 
a minimum. 

In  estimating the critical value of the Rayleigh number R, we choose the 
following trial function satisfying the boundary conditions, 

w = const. sinmn(<+&), (34) 

m being an integer. Substituting ( 3 4 )  in (29) we get after integration 
(m2m2 + u2 + 3k2d2x)  [(m2n2+ u2)2+ Qm2?~~]  

- Lsinh4h a2 1 R =  
8m2n2 

Let a2 = m2n2z. Then ( 3 5 )  becomes 
m4m4 

= __ ( 1  + X +  3k2d2x1) [(l +z2) +Q1], 
Dl X 

(36) 

For a given u2 or x, instability will first set in for the lowest mode m = 1. Therefore 
we have 

(37) 
?T4 

R = -  [( 1 + 2) + 3k2 d2xJ [( 1 + .)' + QJ.  
DlX 

For R to be minimum, d R / d x  = 0, or 

2x3+ 3(1+ k 2 d 2 ~ 1 ) ~ 2  = (1  + Q,) (1  + 3k2d2x1) .  ( 38) 

The positive root of (38) when substituted in ( 3 7 )  will give the critical value of R. 



s kZd2 n 
no, 
1 10-6x 3.33 LO-' 
2 1 0 - 4 ~ 3 . 3 3  1 
3 10-2x 3.33 10 
4 3.33 102 
5 1 0 % ~  3.33 lo3 
6 lO4x 3.33 lo4 
7 106x3.33 lo5 
8 1 0 8 ~ 3 . 3 3  lo6 
9 lOlOx3.33 lo7 

10-6 x 3.33 
10-4 x 3.33 
10-2 x 3.33 
3-33 
102 x 3.33 

106 x 3.33 
108 x 3.33 
1010 x 3.33 

104 x 3.33 

4.9314 
5.0800 
8.5380 

- 

lo-' x 9-9894 10 x 2-6729 
1.0916 10 x 2.7587 
10 x 1.9144 10 x 5.2946 
- 10 x 7.8879 

103 x 1.0010 - 
103 x 1.0010 __ 
103 x 1.0010 -_. 

103 x 1.0010 __ 
103 x 1.0010 - 

Q = 3000 
lo-' 10 x 4.8204 10 x 6.1918 
1 10 x 4.9760 10 x 6.4502 

10 10 x 9.9552 lo2 x 3.6402 
10' 10% x 1.6925 lo3 x 9.7034 

104 - 10' x 6.0491 
105 - lo4 x 6.0491 
106 - lo4 x 6.0491 
107 .- lo4 x 6.0491 

- - 103 

10x 1.5112 
10 x 1.5898 
102 x 1.2422 
103 x 4.5521 

l o 4  x 1.5136 
104 x 1.5136 
lo4 x 1.5136 
lo4 x 1.5136 

- 

Q = 6000 
10 x 6.1790 
10 x 6.3782 
lo2 x 1.2942 
10' x 2.3760 

lo2 x 1.1343 
102 x 1.1780 
102 x 5.9319 
lo' x 1.3405 

- 105 x 1.1362 
- lo5 x 1.1362 
- 105 x 1.1362 
- l o 5  x 1.1362 

- - 

a2 

10 x 3.7486 
10 x 3.8689 
10 x 7.6148 
10' x 1.2099 

& =  

- 

& =  
10 x 7.4042 
10 x 7.6432 
10' x 1.5647 
10' x 3.0471 
- 

TABLE 1. The values of k2d2,  a2, Rc/ROoc for different Q and x = lo3. 

RalRooc 
1500 
10 x 3.4027 
10 x 3.4036 lo2 x 2.2034 
lo3 x 6.8769 

lo4 x 3.2786 
lo4 x 3.2786 
lo4 x 3.2786 
lo4 x 3.2786 

- 

10000 
102 x 1.8213 
10' x 1.8879 

lo4 x 1-7264 

lo5 x 1.8243 
lo5 x 1.8243 
lo5 x 1.8243 
lo5 x 1.8243 

102 x 8.7778 

- 

s k2d' h aL R C I R O O C  CLZ R C I ~ O O C  a2 ~ C I R O O ,  
no. Q = O  Q = 600 Q = 1500 
1 10-9 x 3.33 lo-' 4.9314 lo-' x 9.9890 10 x 2.6730 10 x 1-5092 10 x 3.7490 10 x 3.2730 
2 x 3-33 1 5-0890 1.0920 10 x 2,7580 10 x 1.5903 10 x 3.8690 10 x 3.4243 
3 1 0 - 5 ~  3.33 10 8.5330 10 x 2.4943 10 x 5.2956 10% x 1.6103 10 x 7.6160 lo2 x 2.8803 
4 10-3x 3.33 lo2 9.8446 lo4 x 1.3796 10 x 7.6880 104 x 5.9099 10' x 1.2045 lo4 x 8.9558 
5 10-lx3.33 lo3 9.8500 lo5 x 1.9891 10 x 7.7540 lo5 x 8.7313 lo2 x 1.2199 lo6 x 1.3246 
6 1 0 ~ 3 . 3 3  lo4 - - 

7 103x3.33 lo5 - 106 x 1.0010 - lo7 x 1.5121 - l o 7  x 3.2753 
8 lo5 x 3.33 lo6 - 106 x 1.0010 - lo7 x 1.5121 - lo7 x 3.2753 
9 1 0 7 ~ 3 . 3 3  lo7 - 106 x 1.0010 - lo7 x 1.5121 - lo7 x 3.2753 

- - - - 

Q = 3000 Q = 6000 Q = 100000 
1 x 3.33 10-1 10 x 4.8200 10 x 6.0389 10 x 6.1790 lo2 x 1.1343 10 x 7.4040 lo2 x 1.8212 
2 x 3.33 1 10 x 4.9770 10 x 6.2944 10 x 6.3790 102 x 1.1687 10 x 7.6450 10% x 2.0355 
3 x 3.33 10 10 x 9.9580 10' x 4.6451 lo2 x 1.2944 102 x 7.7191 10' x 1.5030 lo3 x 1.1421 
4 x 3.33 10' LO2 x 1.6926 lo5 x 1.2429 10% x 2,3762 105 x 1.7404 10' x 3-0472 lo6 x 2.2414 
5 10-1 x 3.33 lo3 lo2 x 1.7223 lo6 x 1.8295 lo2 x 2.4336 lo6 x 2.5445 10' x 3.1405 10' x 3-3444 
6 1 0 ~ 3 . 3 3  lo4 - - 

- 108 x 1.8251 7 1 0 3 ~ 3 . 3 3  lo5 - lo7 x 6.0431 - lo8 x 1.1351 
- lo8 x 1.1351 - lo8 x 1.8251 8 105x3.33 10' - 10' x 6.0431 
- 108 x 1.1351 __ lo8 x 1.8251 9 107x3.33 lo7 - lo7 x 6.0431 

- - - - 

TABLE 2. The values of k2d2,  a2, Rc/Rooc for different Q and for x = lo6. 

S k 2 d 2  A a2 RclRooc a2 RCIROOC RCIROOC 
no. Q = O  Q = 600 Q = 1500 
1 10-12 x 3.33 10-1 4.9300 lo-' x 9.9889 10 x 2.6730 10 x 1.5092 10 x 3.7490 10 X 3.2730 
2 10-'Ox3-33 1 5.0900 1.0921 10 x 2.7580 10 x 1.5899 10 x 3.8690 10 x 3.4243 
3 10-8x3-33 10 8.5300 10 x 1.6273 10 x 5.2960 102 x 1.6273 10 x 7.6160 lo2 x 2.9107 
4 1 0 - 6 ~ 3 . 3 3  10% 9.8400 lo5 x 1.1436 10 x 7.6880 105 x 5.1027 10' x 1.2045 lo5 x 7.7324 
5 10-4~3.33  lo3 9.8500 lo6 x 4.4265 10 x 7.7540 lo7 x 1.9621 10' x 1.2199 lo7 x 2.9587 
6 1 0 - 2 ~ 3 . 3 3  lo4 9.8600 10' x 4.9789 10 x 7.7540 108 x 2.2088 10' x 1.2201 lo8 x 3.3296 

8 lO'x3.33 lo6 - 109 x 1.0010 - 1O1O x 1.5121 - lolo x 3.2753 
9 104x3.33 lo7 - 109 x 1.0010 - 101O x 1.5121 - 1O1O x 3.2753 

- - - - - - 7 3.33 105 

Q = 3000 Q = 6000 Q = 10000 
1 10-12 x 3.33 10-l 10 x 4.8210 10 x 6.0389 10 x 6.1790 10% x 1.1343 10 x 7.4040 lo2 x 1.8212 
2 10-1" x 3.33 1 10 x 4.9770 10 x 6.2944 10 x 6.3790 10' x 1.1785 10 x 7.6450 10' x 1.8886 
3 10-8 x 3.33 10 10 x 9.9580 10' x 4.6942 10' x 1.2944 10' x 7.8008 10' x 1.5030 lo3 x 1.1543 
4 10-5 x 3.33 10' 102 x 1.6926 lo6 x 1.0732 10' x 2.3762 lo6 x 1.4913 10' x 3.0472 10' X 1.9352 
5 10-4 x 3-33 lo3 10% x 1.7223 10' x 4.0890 10' x 2.4336 lo7 x 5.6870 10% x 3.1405 lo7 x 7.2756 
6 10-2 x 3.33 lo4 102 x 1.7227 10' x 4.5985 10% x 2.4342 lo8 x 6.3951 loa x 3.1415 108x 8.1810 

8 1 0 2 ~ 3 . 3 3  lo6 - lolo x 6.0431 - 10'l x 1.1351 - 10" x 1.8225 
10" x 1.1351 - lo1' x 1.8225 9 1 0 4 ~ 3 . 3 3  lo7 - 1O'O x 6.0431 - 

TABLE 3. The values of k2d2,  a', Rc/Rooc for different Q and for x = log. 

- - - - - - 7 3.33 105 
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For case ( b )  the equations corresponding to (37) and (38) are respectively 

and 2x3 + 3x2 = 1 + Q1. ( 40) 

The value of x determined as a root of (39) when substituted in (38) gives 

where RMoc is the critical value of the Rayleigh number with magnetic field but 
no radiation and is the same as obtained by Chandrasekhar (1952). It is of interest 

- 1  3L 2 0 1 2 3 4 5 6 7 8 9 10 

log h log h log h 

FIGURE 1. Plot of critical Rayleigh number as a function of h for different values of 
Hartman number Q given on the curves. The dimensionless quantities A, x and Q are charac- 
teristic of absorption coefficient and distance between the horizontal planes, temperature 
in the equilibrium state and magnetic field respectively. The unbroken segments on the 
left of each curve are given by approximation (a ) ,  where @ a2, and those on the right 
by approximation ( b ) ,  where (kd )2  S-- a2. The dotted lines joining the full ones represent 
the interpolation of the two approximations where neither of them holds. (a)  x = los; 
( 6 )  x = 105; (c) x = 109. 

to point out that as x or h -+ 0, equations (37) and (39) and also (38) and (40) 
reduce to two equations obtained by Chandrasekhar and that for x, h and Q all 
+ 0 equation (37) or (39) give the expression for the critical Rayleigh number 
= n4( 1 + x)”x as obtained by Pellew & Southwell (1940). We denote it by R,,,. 
Tables 1-3 give the values of a2 and R,/R,,, for different values of Q and A, 
for x = lo3, 106 and lo9 respectively. Figure 1 gives a plot of log& versus 
log h for the above values of x and for the values of Q given on the curves, while 
figure 2 represents. log Re versus log Q for the different values of h given on 
the curves. The curves for Q = 0 are for no magnetic field and are in fact the 
curves obtained by Goody (1956). The stabilizing effect of an additional magnetic 
field is obvious. The stabilizing influence of radiative transfer is quite evident 
from figure 2 where the curves for h = 10-1 and 1 coincide with that for h = 0, 
which corresponds to no radiation. 
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1=104, lo5, lo6, 107 
A= 10' 

A=10 35 
- 4  A=O, lo-', 1 

3 

'0-4 

n=io5. lo6. 107 

log Q 1% Q log Q 
FIQURE 2. Plot of critical Rayleigh number R, against Hartman number Q for different 
values of h given on the curves. The dimensionless quantities h, x and Q are characteristic 
of absorption coefficient and distance between the horizontal planes, temperature in the 
equilibrium state and magnetic field respectively. The top curve on each diagram is 
given by approximation ( b )  where (kd)2 9 a2, and the others by approximation (a)  where 
(kdp Q a2. (a)  x = 103; ( b )  x = 106; (c) x = 109. 

5. The principle of the exchange of stabilities 
In  this section we propose to examine the physical conditions under which the 

principle of exchange of stabilities applies in relation to the problem under 
investigation. The concept of over-stability as described by Chandrasekhar 
(1961) isalso discussed. As pointed out alreadyequations (1 1) to (14) are the time- 
dependent equations of the problem. By operating with V 2  on equation ( l l ) ,  x* 
can readily be eliminated. The resulting equations become 

- = - pw + w e  + +lcp 
ae 
at 

ah aw 
at 0 aZ - = H - + gV2h. 

If the time dependence in these equations is assumed to be like exp (p*t) the set of 
equations will lead to 

(p*  - vV2) V2w = (V2h) + yV2, O,] 4-rp0 ax 

aw 
O a z '  

(p*  - qV2) h = H J 
Substituting in (42) the asymptotic form of + given by equation (20) and elimi- 
nating 0 we have in terms of the operator D2 the following equation for case (a )  : 

[n - v(D2 - a2)] [n - ~ ( 0 ~  - a2)] ( 0 2  - a2) w + 4nks*d2 ~ [n - v(D2 - .2)] ( 0 2  - a2)w 
CP 
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where n = p* d2, and 
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[n-T(D2-a2)]h = H,dDw. (44) 

With the characteristic-value problem now put in this form one can proceed to 
investigate the criteria to be satisfied for convection or over-stability to occur. 
In relation to equation (43) and (44) these respective cases would arise according 
as (i) n is real and positive or (ii) n is complex, Re(n) > 0 with a finite 
imaginary part. When Re(n) < 0,  whatever be the imaginary part, the distur- 
bance will decay with decreasing amplitude, returning in the limit to the initial 
static state. 

If wi, wj are two eigenvalues of w corresponding to ni and nj respectively, one 
can obtain by a series of steps starting from (43) and (44) (see the appendix for 
details) the equation 

( D W , ~  Dwj + a2wi wj)  dc 

+ (v + K )  

+ L!- (9  - K )  

(D2w,i D2 wj + 2a2Dwi Dwj + a4wi wj)  d< 

* 
(D2hi D2hj + 2a2 Dhi Dhj + a4hi hi) d< 

47% -4 
+ 3k2 d 2 x ~ [ l ; $  (Dwi Owj - __ P Dhi Dhi 

4 7 ~ 0  

(45) 

B complex value of n (i.e. p*)  will be associated with a complex value of w and h 
as will their respective complex conjugates (%,Z, z) which will satisfy the same 
equation and boundary conditions. Now we take (ni,wi,hi) as (n,w,h) and 
(nj, wj, hj)  as (%,E, %) respectively. Equation (45) then becomes 

Im(n) [ 2  Re(n) IT + (v + K )  I: + (477pO)-l,u(7 - K )  I: 

+ 3k2d2XK{(1z - (471/?o)-1pIz) +a2(1$ - (47f~o)-1/d~))] = 0, (46) 

where the I*’s stand for the corresponding integrals and are positive definite. 
Now if 

9 > K ,  (47) 

and Re(%) is positive, Im(n) must be zero. This corresponds to the first kind of 
instability mentioned above, namely convection. The marginal state in this case 
is the limit of solutions as n -+ 0 through positive values. That this limiting 
solution is, in fact, the marginal state for cellular convection can be seen thus. 
Putting Im(n) = 0 in equation (VI) of the appendix, we get the following 

(49) 
quadratic in n: Aln2+B,n+C, = 0. 

A ,  and B, are both always positive. As n --f 0 through positive values, C, --f 0 
through negative values and one recovers from Cl = 0 the value of the Rayleigh 



Gravitational convection of an ionized Jluid 445 

number characterizing the marginal state for convection. For the particular type 
of boundary conditions this reduces to equation (37 ) .  The conditions given by ( 4 7 )  
and (48) are thus sufficient conditions for the principle of exchange of stabilities 
to be valid. 

We now consider the case when n is complex. In  this case since Im(n) =!= 0,  
we have 

2 Re(n) IT + (v + K )  1; + (47fpo)-',U(7 - K )  I:  

+ 3 k 2 d 2 ~ ~ { ( I z  - (4npo)-'pIt) + a2(I; - (4npO)-'pI?)} = 0. (50) 

In  order that Re(n) may be positive, we must have 

(v f K )  1; f (47fp0)-~  p(7 - K )  I: 

+ 3K2d2XK{(Iz - (47fp0)-'p1$) + U 2 ( I g  - (477p0)-'p1?)} < 0. (51) 
This is, therefore, the necessary criterion for instability to arise through oscilla- 
tions of increasing amplitude, described as over-stability. That Im(n) tends to a 
definite limit as Re(n) + 0 in this case may be readily proved. In the process of 
doing this we not only find the minimum value of the Rayleigh number for the 
onset of overstability but also the frequency of oscillations. Putting the trial 
function or w as given by ( 3 4 )  into (44) we have 

Ho drr 
n + 7(n2 + a2) 

h =  cosIT(<+*). 

Substituting these values of w and h in (VI) of the appendix, suppressing the 
subscripts and after some manipulation, we obtain for the case (a): 

n3y + n2n2[(K + 7 + v) y2 + 3k2 d2X1 ~ y ]  
+nn4[(v~+vu+v~)y3+ 3 k 2 d 2 x 1 ~ ( 7 +  u ) y 2 + Q 1 ~ u y - - - 6 R u 2 ~ ~ D 1 ]  

+ 7r6KqV[y4 + 3k2 d2X1 y3 + Q1 y2 + 3k2 d2x1 Q, y - R.;rr-6~2yD,] = 0, ( 5 3 )  

where 

x1 = x / $ ;  Q, = &In2; n = ni = nj. We write ( 5 3 )  as 

n3+B'n2+C'n+D' = 0. (54) 

Let n = p' + iq'. Separating the real and imaginary parts of (54), we have 
p P 3  - (3p' + B') q '2  + B'p'2 + C'p' + D' = 0, 

q ' [ 3 ~ ' ~  - ql2 + 2B'p' + C'] = 0, 
(55) I (i) 

(ii) and 
so that either 

or 3 ~ ' ~  + 2B'p' + C' = 9'2. (ii)] 
The case q' = 0 which corresponds to convection has already been discussed 
above and the second case corresponds to over-stability. In  the marginal state 
as p' --f 0,  q' tends to a definite limit, namely 

or 
$2 = D'IB' = C', (if 

B'C' = D'. (ii) ( 5 7 )  
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Equation (57) is thus the condition for over-stability just to arise. Substituting 
the values of B', C' and D' in (57), we obtain after some simple algebra 

] * (58 )  Q1 Y V  ____ +-- 
(9 -I- K )  (V  + K )  {( 1 + x) f 3(V K)-l k2d2X1 .) 

In  order to obtain the critical value of the Rayleigh number, the expression (58) 
can be minimized in a similar manner as done for the case of marginal stability. 
The equation giving x in this case is 

[2z2+2(A + 1) - ( A  + I)] (1 + x +  B)2 = Tl[(B+ 1) -x(B-  l)], (59) 

where A = 3k2d2X1 K / ( r  +K), 

B = 3k2d2X1K/(V+K), 

Ti = Q1 V / ( T  + K) ( V  + K ) .  

The frequency of oscillations q' in the marginal state is given by 

m2 K7V{y3  + 3 ~ ~ d ~ ~ l y ~  + Q1v + 3K2d2X1 Q1- 7r4RDl(y - 1)) * 
d2 c I or q' = - ~ 

( K +  7 + V )  9 + 3K2d2X1K 

n2 
d2 

= - [ ( Y K  + T V  + V K )  y2 + 3k2 d2x1 K ( 7  + V )  9- Q1 V V  - T-~RVKZJ-~(Y - 1) D1]*- 

(60) 
The equation corresponding to (43) in case (b )  is 

[n - v(D2 - a2)] [n - K ~ ( D ~  - a2)] (D2 - a2) w 

- - 'Ad [n- K ~ ( D ~ - ~ ~ ) ]  (D2-a2)  h+ uya2d4/3w, (61) 
 PO 

where K~ = ~ ( 1  +x). One obtains (see the appendix) from (61) the following 
equation corresponding to (46) for case (a )  : 

Im(n) [2Re(n)IT+ ( V + K J I ;  + (4~p~)-~p(T-K1)13*1 = 0. (62) 

Following arguments similar to those in case (a )  it  may be shown that for the 
principle of exchange of stabilities to hold the condition 

T > K1 (63) 

is a sufficient one. For x or h + 0, equations (47) and (62) reduce to a common 
equation and (47), (48) and (63) give place to 

T > K ,  (64) 

a condition obtained by Chandrasekhar (1952). 
The corresponding value of the Rayleigh number for over-stability is 
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from which a critical value of R may be easily obtained. The frequency of 
oscillations in the marginal state is given by 

(66) 
7r2 - - [ ( V K ~ + ? / V +  ~ K ~ ) Y ~ + Q ~ ~ V - - - ~ R V K D ~ ( Y -  1 ) /~14 .  - d2 

The values of the Rayleigh number given by (65) and (58) and those of frequency 
of oscillations given by (60) and (66) lead to Chandrasekhar's results for x or 
h+0. 

6. Manner of onset of instability 
It is of interest to know which type of instability-convection or over- 

stability-will arise first. One can find this information conveniently for very 
large values of Q only. This will also provide us with the necessary conditions for 
the validity of the principle of exchange of stabilities. 

Let us call R(cDOn.) and B&!?,O.~.) the limiting critical Rayleigh numbers evaluated 
from ( 3 7 )  and (58) for Q + 00. 

Case (a). From (38), we have 

xmin -+ [+(I  + 3 ~ ~ d ~ ~ 1 )  QJ', (67) 

R(cCOn.) -+ r4Q1/D,. (68) 
Again equation (59) may be written as 

(69) 
( l + x + B ) 2  

[l - x ( B  - 1) / (B  + l)] 
[2x2 + x ( A  + 1)  - ( A  + l ) ]  _ _ _ _ ~ - -  - ___ = T,(B + 1). 

Now three cases arise, namely (i) B 4 1, (ii) B = 1 and (iii) B 9 1. The first two 
are possible for small values of h (say h = 10-1, 1)  when in fact radiative transfer 
effects are quite small and the fluid motion is largely affected by the magnetic 
field. Case (iii) is possible for large values of h within the limitations imposed by 
case(a) (say h = 10  to 104 depending upon the values of x used). In  this case 
the fluid motion is also affected by radiative transfer. 

(i) B 4 1, in this case (B-  1)/(B+ 1) N - 1, so that from (69) when Q -+ cc 
(i.e. Tl + 00)' we obtain 

(ii) For B = 1 and Q1 -+ 00, we obtain from (69) 

I x,, + (Tl)4 

and thus 

Now suppose instability as convection arises first which requires 
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this will always be satisfied if 7 > K ,  a condition already obtained by Chandrasek- 
har (1952). This result is otherwise obvious too. It can easily be shown that the 
limiting value of the frequency of oscillations in the marginal state for over- 
stability is not affected by radiation. 

(iii) B 9 1. In  this case (B- I)/@+ 1) N 1, and from (69) the only positive 
root for Q + 00 is x =  1, 

and does not depend upon T, (or Q1) as is usually the case. And 

for convection to arise first, we have 

(Tf V) 7 3 k 2 d 2 X 1  h2 
~- >- N -  

4 4772 ’ 01’ 
K K  

which is satisfied if ( T / K )  > h/3n. (74) 

It appears that in this case overstability will arise earlier than convection and we 
cannot apply the principle of exchange of stabilities. 

Case (b) .  In  this case it can be shown that xmin varies as (Q1)* both in the case of 
convection as well as over-stability. But this clearly violates the restriction 
k2d2  9 a2 essential for this approximation. It appears that for a given Q and 
large x or for a given x and large Q, fluid motion can be treated at  the level of 
approximation (a)  only. 

7. Discussion 
Radiative transfer and magnetic field have a stabilizing influence. Tables 1-3 

show the total inhibiting effect for different values of Q. This results from the fact 
that radiative transfer tends to damp out any motions which may arise due to 
heat transfer from hotter to colder parts of the fluid. Again the presence of 
magnetic field will make more difficult the closing down of the streamlines and 
the consequent cell formation. As expected the size of the Bhard  cells for case 
(a)  is larger than that in the presence of radiative transfer or a magnetic field 
alone. 

From the curves of log R, versus log hit  is clear that for small values of h = 1 0-l, 
1, the inhibiting effect is mainly due to the magnetic field and there are no radiative 
transfer effects on the convective motion. As the value of h increases within the 
restrictions imposed by the approximation (a)  the radiative transfer becomes 
important and largely contributes to the stability of the fluid. The ‘inhibition’ 
by the magnetic field is quite small in this region. This is evident from the fact 
that curves for different values of Q are crowded in the neighbourhood of the 
curve for Q = 0. 

In  the case (b)  the fluid behaves as if having a diffusivity K~ = K(  1 + x) and the 
stabilizing effect of the magnetic field depends upon its strength. It may be 
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pointed out that maximum stabilization is achieved when the fluid is optically 
thick, the critically Rayleigh number is then RMoc( 1 + x) /Dl  where R,,, is the 
value of the Rayleigh number in the presence of magnetic field alone. 

As would appear from (47) and (48), the conditions for the principle of exchange 
of stabilities to be true under approximation (a )  are the same as in the absence of 
radiation. 

The curves €or logR, versus log& show the stabilizing effect of radiative 
transfer on the conducting fluid in the presence of a uniform magnetic field. This 
largely supports the conclusion obtained above. As remarked a t  the end of the 
last section, the presence of a very strong magnetic field lends a transparent 
character to the fluid. Also the effect of a very strong magnetic field for 
viscous and finitely conducting fluid (under approximation ( a ) )  is to give rise to 
over-stability rather than convection first. These points seem to require further 
clarification. 

From equation (58) it  seems that the effect of radiative transfer on over- 
stability is twofold: (i) to reduce the effect of magnetic field on the Rayleigh 
number characterizing the marginal state for over-stability7 and (ii) to stabilize 
the oscillations of increasing amplitude. 

A similar problem which replaces magnetic field by rotation is under study. 
Preliminary investigations show that the results similar to (72) and (74) are not 
true in that case. The results of this investigation we hope to publish in the near 
future. 

We are grateful to Dr V. R. Thiruvenkatachar for many useful and stimulating 
discussions. We are also thankful to Dr R. S. Varma for his permission to publish 
this paper. Thanks are also due to Messrs V. B. Kapoor, Jaswant Rai and Vidya 
Parkash for carrying out most of the calculations. 

*ppendix Derivation of equation (45) from (43) and (44) 

Case (a). Multiply equation (43) by w j  (corresponding to nj) and integrate with 
respect to [ over the range - 4 < 6 < 4. After repeated integration by parts, 
we have 

+ a4wi w j )  d [ +  3k2 d 2 ~ ~  j:4 (Dwi Dw, + a2wi zui) dc + U K  (D3wi D3wj 1 [ I:* 
+ 3a2D2wi D2wi + 3a4Dwi Dwj + a6wi w j )  d [ +  3k2 d 2 X u K  J1", (D2wi D2wj 

+ 2a2Dwi Dwj + a4wi w j )  dc+ ya2 d4J:+ (pwi wj) d [ ]  

29 Fluid Mech. 14 
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Multiplying both sides of equation (44) in terms of ni and wi by (D2 - a2) hj and 
integrating by parts, we have 

3 
(Dh, Dhj + a2hi h j )  dc+ 7 (D2hi D2hj + 2a2Dhi Dhj +a4& h j )  d< 

= Hod/*  wi(D2-u2)Dhidc. (11) 
n"-* J!, 

-3 
Interchanging i and j we obtain 

nj J t  (DFO, ~ h ,  + a2h, hj) dg+  7 ( 0 2 1 ~ ~  ~ 2 h ~  + 2 a 2 ~ h , ~ h ~  + a4h, hj) dc 

-4 J:& = HodS_hwj(D2-u2) t Dh,d<. (111) 

Multiplying (111) by ni, we get 

ni nj (Dhi Dh,. + a2hi hi) d5 + 7 ,  (D%, Dzhj + 2a2Dhi Dhj + a4hi h,j) dc  1:s f+ 
= Ho dni wj(D2 - a2) Dh, dc. (IV) 

Similarly, after multiplying (44) by ( 0 2 -  a2)2Dhj, integrating by parts and then 
interchanging i and j ,  we get 

s1, 

* 
-t 

Substituting from (111), (IV) and (V) in (I), we have 

+ 3a4Dh, Dhi + a%, hj)  dc = - Hod / wj(D2 - a2)2 Dh, dc. (V) 

(Dw, Dwj + a2wi w j )  dg+ ni (v + K )  (D2wi D2wi + 2a2Dwi Owi [ s1, s 
n t &  

I + a4wi wi) a5 + 3~ d 2 X K  (DW, DW,. + a2wi w j )  
/:3 

+ V K  1 is (D3w, D3wj + 3a2D2w, D2wj + 3a4Dw, Dwj + a6wi wi) dc 
I J - *  

+ni(xI:s (D2F, D2hi+ 2a2DhiDhj+a4hihi)dc+ 3 k 2 d 2 x ~  (DhiDhj+a2hihi)d< 

+ T K  { (D3wi D3wj + 3a2D2w,D2wj + 3a4Dw, Dw,.) d< 

+ 3 k 2 d 2 ~  (D%, D2h, + 2a2Dhi Dhj + a4hi hi) dg 
-s 

Interchanging i a n d j  and then subtracting, we get equation (45). 
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Case (b) .  The corresponding equations for this case can easily be obtained from 
that of case (a )  by letting x --f 0 and K --f K ~ ,  where K~ = K (  1 + x). Thus in the final 
equation, corresponding to (45), interchanging i and j then subtracting, we get 

(ni-nj) (n2+nj) ( D ~ ~ D w ~ + a ~ w ~ w , . ) d ~ + ( v + ~ ~ )  (D2wiD2wi 

+ 2a2Dwi Dwi + a6wi wi) dC+ (p/4npO) (7 - K ~ )  

[ I:, I!& 
(D2hi D'hj + 2a2Dhi Dh, + a4h2 hi) dc = 0,  I 

from which equation ( 6 2 )  can easily be derived. 
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